
EXISTING

IN

TIME

Feddersen NYU/ITP

Aka Time Code

‘The difference between things and
events is that things persist in time;
events have a limited duration. A
stone is a prototypical “thing”: we can
ask ourselves where it will be
tomorrow. Conversely, a kiss is an
“event.” It makes no sense to ask
where the kiss will be tomorrow. The
world is made up of a network of
kisses, not of stones.’

‘On closer inspection, even the things
that are most “thinglike” are nothing
more than long events. The hardest
stone … is in reality a complex
vibration of quantum fields, a
momentary interaction of forces, a
process that for a brief moment
[eons] manages to keep its shape.’

‘On closer inspection, even the things that are most
“thinglike” are nothing more than long events. The hardest
stone, in the light of what we have learned from chemistry,
physics, from mineralogy, from geology, from psychology, is
in reality a complex vibration of quantum fields, a
momentary interaction of forces, a process that for a brief
moment [eons] manages to keep its shape, to hold itself in
equilibrium before disintegrating into dust, a brief chapter in
the history of interactions between the elements of the
planet, a trace of Neolithic humanity, a weapon used by a
gang of kids, an example in a book about time, a metaphor
for an ontology, a part of a segmentation of the world that
depends more on how our bodies are structured to perceive
than on the object of perception - and, gradually, an intricate
knot in that cosmis game of mirrors that constitutes reality.
The world is not so much made up of stones as of fleeting
sounds, or of waves moving through the sea. ’

CODE
More situated in time than linear media or static artifacts
Temporal and meta-temporal medium

Situated in time, with loops and branches, but not self-referential

4
4

CODE MUSIC

CODE MUSIC
TIME SIGNATURE 1/4 NOTE 1/8 NOTE

1/2 NOTE

1/4 REST

Symbols for representing time

CODE MUSIC
LOOP DELIMITER SYMBOL

REPEAT SECOND
SECTION, USE
ALTERNATE
ENDING SECOND
TIME

REPEAT FIRST SECTION ONCE

Symbols for structuring execution

CODE MUSIC
Simple outline can be decoded in sophisticated way by
specially-trained agents aka ‘musicians’

https://www.reedmaxson.com/graphic-scores.html

https://www.reedmaxson.com/graphic-scores.html

https://www.youtube.com/watch?v=HilGthRhwP8

Rite of Spring Score, Igor Stravinsky

La Cachucha, by Friedrich Albert Zorn (wikipedia)

https://www.moma.org/explore/inside_out/2012/12/21/exhibiting-
fluxus-keeping-score-in-tokyo-1955-1970-a-new-avant-garde/

https://www.moma.org/explore/inside_out/2012/12/21/exhibiting-fluxus-keeping-score-in-tokyo-1955-1970-a-new-avant-garde/
https://www.moma.org/explore/inside_out/2012/12/21/exhibiting-fluxus-keeping-score-in-tokyo-1955-1970-a-new-avant-garde/

Score of Ice Spirits, Meredith Monk

These things can make music, but neither of them is music

CODE
BRANCH

SPAWN

More situated in time than linear media or static artifacts

Static 
description  
(code) LOOP

Dynamic result

CODE

LOOP

BRANCH
SPAWN

More situated in time than linear media or static artifacts

Static 
description  
(code)

Dynamic result

Refer to and alter source

MEMORY
Write Read

Self referential (input and output is same thing)

“A computer is a clock with benefits.
They all work the same, doing second-
grade math, one step at a time: Tick,
take a number and put it in box one.
Tick, take another number, put it in
box two. Tick, operate (an operation
might be addition or subtraction) on
those two numbers and put the
resulting number in box one. Tick,
check if the result is zero, and if it is,
go to some other box and follow a new
set of instructions.”

ONSEMI A037L 707.35MHZ VCXO

ARDUINO PROCESSING P5JS

“TIC
K”

P5JS

“TIC
K”

Smoothly transition a variable from one value to another in a set time
EASING

Schedule code for execution in the future
TIMELINES

Use physics or other rules to determine next frame for one or more objects.
SIMULATION

EASING

ROBERT 
PENNER

Robert Penner’s
Programming Macromedia
Flash (2002)

https://easings.net/en

ROBERT 
PENNER

https://easings.net/en

0

100% 
1.0

0 100% 
1.0

VALUE

PROGRESS

Smoothly transition a variable from one value to another in a set timeEASING

0

100% 
1.0

0 100% 
1.0

VALUE

PROGRESS

0

100% 
1.0

0 100% 
1.0

VALUE

PROGRESS

0

100% 
1.0

0 100% 
1.0

VALUE

PROGRESS

0

100% 
1.0

0 100% 
1.0

VALUE

PROGRESS

https://easings.net/en

ROBERT 
PENNER

https://easings.net/en

ROBERT 
PENNER

Robert Penner’s
Programming Macromedia
Flash (2002)

https://greensock.com/ease-visualizer

Once you see “easings”, they’re everywhere!

SIMULATION

Use physics or other rules to determine next frame for one or more objects.SIMULATION

Craig Reynolds’ Boids (1986) Robert Hodgin’s (Flight 404)  
Magnetosphere, 2007

Initial Position

Initial Velocity

Constant Acceleration (Gravity)

T = 0

T = 1
Acceleration is sum of forces acting on particle 
Add acceleration to velocity 
Add velocity to position

T = 2

T = 3

T = 4…

Initial Position

Initial Velocity

Constant Acceleration (Gravity)

Acceleration is sum of forces acting on particle 
Add acceleration to velocity 
Add velocity to position

t

http://roberthodgin.com/project/magnetosphere

Can be expanded to three
dimensions, multiple particles, and
attractive and repulsive forces. But
the steps between frames will
remain basic vector addition.

https://github.com/flight404/Eyeo2012

Acceleration is sum of forces acting on particle 
Add acceleration to velocity 
Add velocity to position

“The physics of the simple vehicle model is based on
forward Euler integration. At each simulation step,
behaviorally determined steering forces (as limited
by max_force) are applied to the vehicle’s point mass. This
produces an acceleration equal to the steering force
divided by the vehicle’s mass. That acceleration is added
to the old velocity to produce a new velocity, which is
then truncated by max_speed. Finally, the velocity is added
to the old position:

 steering_force = truncate (steering_direction,
max_force)
 acceleration = steering_force / mass
 velocity = truncate (velocity + acceleration,
max_speed)
 position = position + velocity

The simple vehicle model maintains its velocity-aligned
local space by incremental adjustment from the previous
time step.”

https://www.red3d.com/cwr/steer/gdc99/

Acceleration is sum of forces acting on particle 
Add acceleration to velocity 
Add velocity to position

Steering Behaviors For Autonomous Characters 
Craig W. Reynolds

https://www.red3d.com/cwr/steer/gdc99/

Pretty good source in-house

Integrator class used throughout Ben Fry’s first Processing text
EXAMPLE
A simple, simulation-based easing that can easily be applied to
variables to achieve smooth animation.

class Integrator {

 final float DAMPING = 0.5f;
 final float ATTRACTION = 0.2f;

 float value; float vel; float accel; float force;
 float mass = 1;

 float damping = DAMPING;
 float attraction = ATTRACTION;
 boolean targeting;
 float target;

 Integrator() { }

 Integrator(float value) {
 this.value = value;
 }

 Integrator(float value, float damping,
 float attraction) {
 this.value = value;
 this.damping = damping;
 this.attraction = attraction;
 }

 void set(float v) { value = v;}  

 void update() {
 if (targeting) {
 force += attraction * (target - value);
 }

 accel = force / mass;
 vel = (vel + accel) * damping;
 value += vel;
 force = 0;
 }

 void target(float t) {
 targeting = true;
 target = t;
 }

 void noTarget() {
 targeting = false;
 }
}

Integrator class used throughout Ben Fry’s first Processing text
EXAMPLE

What this means: An Integrator maintains a current value. That value can

be set to a new target. With each call to update, it will use a simple

simulation to move the current value towards th
e target.

Integrator class used throughout Ben Fry’s first Processing text
EXAMPLE

The processing sketch maintains an array of Integrators, and calls update on

each one in the draw loop. Marks are rendered based on the integrators’

current value, and when an integrator’s target is changed, the mark

animates to the new value.

Integrator[] interpolators;
//. . .

void setup() {
 //. . .
 interpolators = new Integrator[rowCount];
 for (int row = 0; row < rowCount; row++) {
 float initialValue = dataTable.getFloat(row, 1);
 interpolators[row] = new Integrator(initialValue, 0.5, 0.01);
 }

void draw() {
 //. . .
 for (int row = 0; row < rowCount; row++) {
 interpolators[row].update();
 }

TIMELINES

MINIMAL TIMELINE ALGORITHM

What time is it NOW?

Based on that, what should I do?

MINIMAL TIMELINE ALGORITHM

TIMESTAMP

“SOMETHING”

TIMESTAMP

“SOMETHING”

TIMESTAMP

“SOMETHING”

…
“Something” could really be anything: a function to call, a variable with a new value, a string label…

MINIMAL TIMELINE ALGORITHM

100

“END_INTRO”

110

“START_CHAPTER_1”

200

“END_CHAPTER_1”

…210

“START_CHAPTER_2”

Maintain list of events ordered by increasing timestamp.

Each time through a loop, get the current time.

Get a list of any events with a timestamp < current time.

Handle each event in the list. This could be as simple as a
switch case statement with a list of modes.

//basic event handler:  
switch(event_label) {

 case “END_INTRO”:  
 //something  
 break;

 case “START_CHAPTER_!”:  
 //something  
 break;

 case “END_CHAPTER_1”:  
 //something  
 break;

 //Etc…  
}

MINIMAL TIMELINE ALGORITHM

Creating a case for each event does not scale well with more
than a few events. A better system would have a flexible
means of triggering just about anything possible in an
environment: calling a function, updating a variable value,
starting an easing that updates a variable value, triggering
another timeline, etc.

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

BETTER TIMELINE ALGORITHM

Greensock - the same library with robust easing tools - has
comprehensive timeline features, too:

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

T

EVENT

